Critical exponent for semilinear damped wave equations in the N-dimensional half space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential

We study the balance between the effect of spatial inhomogeneity of the potential in the dissipative term and the focusing nonlinearity. Sharp critical exponent results will be presented in the case of slow decaying potential.

متن کامل

Global Attractors for Damped Semilinear Wave Equations

The existence of a global attractor in the natural energy space is proved for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain Ω ⊂ R with Dirichlet boundary conditions. The nonlinear term f is supposed to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n n−2 . No Lipschitz condition on f is assu...

متن کامل

Inertial manifolds of damped semilinear wave equations

© AFCET, 1989, tous droits réservés. L’accès aux archives de la revue « Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de cop...

متن کامل

Regularity of the global attractor for semilinear damped wave equations

utt + 2ηA 1 2 ut + aut + Au = f(u) in H1 0 (Ω)×L2(Ω), where Ω is a bounded smooth domain in R3. For dissipative nonlinearity f ∈ C2(R,R) satisfying |f ′′(s)| ≤ c(1 + |s|) with some c > 0, we prove that the family of attractors {Aη , η ≥ 0} is upper semicontinuous at η = 0 in H1+s(Ω)×Hs(Ω) for any s ∈ (0, 1). For dissipative f ∈ C3(R,R) satisfying lim|s|→∞ f ′′(s) s = 0 we prove that the attract...

متن کامل

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2003

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2003.09.029